Chemical amplification in an invaded food web: seasonality and ontogeny in a high-biomass, low-diversity ecosystem.
نویسندگان
چکیده
The global spread of invasive species is changing the structure of aquatic food webs worldwide. The North American Great Lakes have proved particularly vulnerable to this threat. In nearshore areas, invasive benthic species such as dreissenid mussels and round gobies (Neogobius melanostomus) have gained dominance in recent years. Such species are driving the flow of energy and material from the water column to the benthic zone, with dramatic effect on nutrient and contaminant cycling. Here, we develop a stage-structured model of a benthified food web in Lake Michigan with seasonal resolution and show how its bioaccumulation patterns differ from expected ones. Our model suggests that contaminant recycling through the consumption of lipid-rich fish eggs and mussel detritus is responsible for these differences. In southern Lake Michigan's Calumet Harbor (Chicago, IL, USA), round gobies have nitrogen isotope signatures with considerable spread, with some values higher than their predators and others lower than their prey. Contrary to patterns observed in linear pelagic systems, we predict that polychlorinated biphenyl (PCB) concentrations in these fish decrease with increasing size due to the lipid- and benthos-enriched diets of smaller fish. We also present here round goby PCB concentrations measured in 2005 after an invasional succession in Calumet Harbor and demonstrate how the change from one invasive mussel species to another may have led to a decrease in round goby PCB accumulation. Our results suggest that benthic-dominated systems differ from pelagic ones chiefly due to the influence of detritus and that these effects are exacerbated in systems with low species diversity and high biomass.
منابع مشابه
Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat
BACKGROUND Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these int...
متن کاملAssessment of Health Conditions of Mountain Rangeland Ecosystem Using Species Diversity and Richness Indices, Case Study: Central Alborz (Iran)
Based on the importance and role of species diversity and richness as ameasurement of the health of an ecosystem; studying of their components can lead toevaluate the health condition of rangeland. This research was carried out in a part ofhighland mountainous rangeland of Mount Alborz Range in Iran. Diversity and richnesswere assessed as an ecosystem health indicator. The study area was locate...
متن کاملMultitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers.
The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional d...
متن کاملMacroinvertebrate diversity indices: A quantitative bioassessment of ecological health status of an oxbow lake in Eastern India
Aquatic macroinvertebrates, which play a significant role in the food chain of an ecosystem, are used in fresh water quality assessment to identify the environmental stress resulting from a variety of anthropogenic disturbances. Seasonal surveys of macroinvertebrate communities were conducted from April 2013 to March 2014 in Chhariganga oxbow lake of Nadia District of West Bengal, an eastern st...
متن کاملPrey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental toxicology and chemistry
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2008